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Magnetic field applied to the quantum dot coupled between one metallic and one superconducting electrode
can produce a similar effect as has been experimentally observed by Meservey et al. �Phys. Rev. Lett. 25, 1270
�1970�� for the planar normal metal-superconductor junctions. We investigate the tunneling current and show
that indeed the square-root singularities of differential conductance exhibit the Zeeman splitting near the
gap-edge features V= �� /e. Since magnetic field affects also the in-gap states of quantum dot, it furthermore
imposes a hyperfine structure on the anomalous �subgap� Andreev current which has a crucial importance for
a signature of the Kondo resonance.
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I. INTRODUCTION

Already in early days of the tunneling spectroscopy it has
been shown that magnetic field B �which couples to spin of
the charge carriers� is in superconductors responsible for
splitting the square-root singularities of the tunneling
conductance1 by the Zeeman energy 2�BB, where �B is the
Bohr magneton. This Meservey-Tedrow-Fulde �MTF� effect
has been observed experimentally in the thin superconduct-
ing aluminum films applying parallel magnetic field so that
orbital diamagnetic effects could be avoided. Similar quali-
tative results have been recently noticed in the measurements
of c-axis tunneling for the layered high-temperature super-
conducting compounds.2

We argue that the MTF effect should be also feasible in
various nanostructures consisting of a quantum dot �QD�
placed between one metallic and one superconducting elec-
trode. Zero-dimensional character of QDs in a natural way
eliminates the influence of orbital effects therefore magnetic
field would affect the charge transport only through the Zee-
man term. This can in turn manifest itself in the differential
conductance. Roughly speaking, the charge current flows if
an external bias V exceeds the energy gap � �necessary to
break the Cooper pairs into individual electrons� thereof the
resulting conductance has a low-voltage onset near the gap
edges eV= ��. In the presence of a magnetic field, these
gap-edge singularities are going to split �see Sec. III�.

More detailed analysis of the charge tunneling3 involves,
however, also the additional �anomalous� channels due to
mixing of the particle and hole excitations in superconduct-
ors. In particular, even at subgap voltages �eV��� the
mechanism of Andreev reflections provides a finite contribu-
tion to the conductance. Since the Andreev mechanism is
very sensitive to location of the in-gap QD states4–8 and the
on-dot correlations,9–18 we shall explore the influence of
magnetic field on such subgap conductance. In Sec. IV we
discuss a hyperfine structure for the Andreev conductance
neglecting the correlations. In Sec. V we extend our study
taking into account a finite value of the on-dot repulsion U.
We show that appearance of the low-temperature Kondo
resonance enhances the zero-bias conductance and this fea-

ture undergoes the Zeeman splitting when magnetic field is
applied.

In practical terms, there have been considered some pro-
posals for the magnetic field tuned Andreev scattering as an
efficient cooling mechanism in two-dimensional electron
gas—superconductor nanostructure19 and a possibility to use
the so-called Andreev quantum dot as a magnetic-flux
detector.20

II. MODEL

For a general description of transport phenomena through
a nanoscopic island placed between external leads one
should consider a quantized multilevel structure of QD.21

However, in the case when a level spacing is smaller in com-
parison to QD hybridization with the electrodes one can re-
strict to a simplified picture of the Anderson model5,6,9–11

Ĥ = ĤN + ĤS + �
�

�d,�d̂�
† d̂� + Un̂d↑n̂d↓

+ �
k,�

�
	=N,S

�Vk	d̂�
† ĉk�	 + Vk	

� ĉk�,	
† d̂�� . �1�

Operators d� �d�
†� denote the annihilation �creation� of elec-

tron whose energy level is 
d,� and U is the on-dot Coulomb
repulsion between opposite spin electrons. The last terms
describe hybridization of QD with the normal �	=N� and
superconducting �	=S� electrodes. Magnetic field eventually
shifts the QD level by 
d,�=
d−g��BB, where the spin-
dependent coefficients are defined as g↑=1 and g↓=−1.

Hamiltonian of the normal �metallic� lead is taken as

ĤN=�k,��kN
� ĉk�N

† ĉk�N whereas for the superconducting elec-

trode we choose the usual BCS form ĤS=�k,��kS
� ĉk�S

† ĉk�S
−�k��ĉk↑S

† ĉ−k↓S
† +H.c.� with an isotropic energy gap �. The

relative energies �k	
� = �
k	−g��BB�−�	 are measured from

the chemical potentials �	. We shall focus on the wide band
limit �Vk	��D �where −D�
k	�D� and consider a small
external voltage V, which detunes the chemical potentials by
�N−�S=eV inducing the charge flow through N-QD-S junc-
tion. We assume �eV� to be much smaller than level spacings
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typical for the realistic QDs �Ref. 21� so that applicability of
the model �1� can be justified.

Let us start by establishing the QD Green’s function in the
equilibrium situation, i.e., for V=0. Fourier transform of the
retarded Green’s functions can be formally expressed by the
Dyson equation

G��
�−1 �� 		d̂�; d̂�
†


 		d̂�; d̂�




		d̂−�
† ; d̂�

†


 		d̂−�
† ; d̂−�




�−1

= �
 − 
d,� 0

0 
 + 
d,−�
� − �d,�

0 �
� − �d,�
U �
� ,

�2�

where �d,�
0 denotes the self-energy of noninteracting QD

�U=0� and �d,�
U accounts for the correlation effects. For a

simple understanding of the MTF effect it would be helpful
to focus first on the uncorrelated QD when the self-energy is
known exactly. Further corrections due to �d,�

U contribute a
renormalization of the spectral function14 whose impact on
the charge transport will be discussed separately in Sec. V.

For convenience we introduce the hybridization coupling
�	�2��k�Vk	�2��
−
k	� and define the following spin-
dependent energy 
̃�=
+g��BB. Imaginary part of the self-
energy �d,�

0 for �
̃���� is given by Im �d,�
0 �
�=−

�N

2 1 while
at large energies D� �
̃���� it takes the following
form:12,15

Im �d,�
0 �
� = −

1

2��N + �S

�
̃��


̃�

2 − �2
�S

� sgn�
̃��


̃�

2 − �2

�S
� sgn�
̃��


̃�

2 − �2
�N + �S

�
̃��


̃�

2 − �2
� .

�3�

The corresponding real parts can be determined using the
Kramers-Krönig relations.

Imaginary part of the self-energy �d,�
0 has thus the square-

root singularities at energies 
= ����BB, so in presence
of magnetic field there are altogether four such points. They
show up as kinks in the spectral function �d�
�=���d,��
�,
where

�d,��
� = −
1

�
Im		d̂�; d̂�

†


+i0+. �4�

We shall see below that appearance of such characteristic
points leads to the MTF effect observed in the tunneling
conductance.

III. MESERVEY-TEDROW-FULDE EFFECT

To compute the tunneling current we adopt the formalism
outlined in the previous studies8,9,12 extending it here on a
situation with the spin sensitive transport due to magnetic

field. The steady charge current is defined as I�V�
=−e d

dt 	�k,�ĉk�N
† ĉk�N
=e d

dt 	�k,�ĉk�S
† ĉk�S
. We carry out the

time derivative and determine the expectation value using
the nonequilibrium Keldysh Green’s functions.

In analogy to the standard Blonder-Tinkham-Klawijk
theory3 we express the current as composed of two contribu-
tions

I�V� = I1�V� + IA�V� . �5�

The first part I1�V� stands for a contribution which at low
temperatures appears practically outside the energy gap
�eV���. Its magnitude is expressed by the Landauer-type
formula

I1�V� =
e

h
�
�
� d
T1,��
��f�
 + eV� − f�
�� , �6�

where f�
�= �1+exp�
 /kBT��−1. The transmittance T1,��
�
is nonvanishing only outside the energy gap �
̃���� and is
given by the following parts of the retarded Green’s
functions8,12

T1,��
� =
�N�S�
̃��


̃�

2 − �2
��		d̂�; d̂�

†


�2 + �		d̂�; d̂−�


�2�

−
2�N�S�



̃�
2 − �2

Re�		d̂�; d̂�
†


		d̂�; d̂−�




� � . �7�

The second part in Eq. �5� originates from the mechanism
of Andreev reflections3,9,12

IA�V� =
e

h
�
�
� d
TA,��
��f�
 + eV� − f�
 − eV�� . �8�

Its transmittance is finite even inside the energy gap8,12

TA,��
� = �N
2 �		d̂�; d̂−�


�2. �9�

Physically such process occurs when an incident electron
from N electrode �of arbitrary energy� is converted into a
pair on QD �with a simultaneous reflection of a hole� and it
propagates in S electrode as a Cooper pair. This anomalous
Andreev current is closely related to the off-diagonal order
parameter induced in the QD �proximity effect�.14,15

Figure 1 illustrates the influence of magnetic field on the
total differential conductance G�V�= d

dVI�V� obtained for
N-QD-S junction. We clearly notice the Zeeman splitting of
the square-root singularities resembling the former experi-
mental observation for N-I-S �I-insulator� junction.1 How-
ever, in a present case the conductance does not saturate to a
finite value far outside the gap �eV��� because the QD
spectrum spreads only nearby 
d �usually in realistic multi-
level QDs there would be seen the quantum oscillations of
G�V� �Ref. 21��. The in-gap features related to the Andreev
current are discussed in Secs. IV and V.
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IV. MAGNETIC-FIELD EFFECT ON THE ANDREEV
CURRENT

The mechanism of Andreev reflections transmits the
charge current even for the subgap voltages. To focus solely
on this anomalous current it is convenient to consider the
extreme limit �→� as proposed by Tanaka et al.14 In such
case I1 can be completely discarded from our analysis. Using
Eq. �3� we obtain the self-energy �d,�

0 simplified to9,14,15

�d,�
0 �
� = −

1

2
�i�N �S

�S i�N
� . �10�

Upon neglecting the Coulomb correlations one can ana-
lytically determine Green’s function �2�, where the spin-
dependent spectral function �4� acquires the BCS structure14

�d,��
� =
1

2
�1 +


d

Ed
�

1

�
�N/2

�
̃� − Ed�2 + ��N/2�2

+
1

2
�1 −


d

Ed
�

1

�
�N/2

�
̃� + Ed�2 + ��N/2�2 �11�

with a quasiparticle energy Ed=

d
2+ ��S /2�2. The in-gap

QD states �often referred as Andreev bound states� form
around �Ed��BB as illustrated in the upper panel of Fig. 2.
Their line broadening is given by �N /2 and in absence of
magnetic field the particle-hole splitting is controlled by �S
�Refs. 14 and 15� �the dashed line in Fig. 2�. Magnetic field
further enforces the Zeeman splitting of these in-gap states.

Above mentioned behavior has an indirect effect on the
off-diagonal parts of Green’s function �2� which in turn de-
termine the Andreev transmittance. In the limit �→� Eq.
�9� reduces to

TA,��
� =
�N

2 ��S/2�2

��
̃� − Ed�2 + ��N/2�2���
̃� + Ed�2 + ��N/2�2�
.

�12�

The subgap Andreev conductance GA�V�= d
dVIA�V� is thus

characterized by a four peak structure as shown in the bottom

panel of Fig. 2. Obviously the weights of particle and hole
peaks of the spectral function �11� as well as their weights in
the Andreev transmittance �Eq. �12�� depend on the QD level

d. Variation in the Andreev conductance with respect to
�V ,
d� is plotted in Fig. 3. We can notice that optimal con-
ditions for the subgap current occur when the QD level is
located near the energy-gap center, otherwise the proximity
effect is less efficient.

On top of the particle-hole structure seen in the Andreev
states there is an additional Zeeman splitting brought by
magnetic field. In Fig. 4 we sketch the Andreev conductance
in �V ,B� plane for 
d=0, where the dark areas correspond to
a maximal value 4e2 /h. There appears a characteristic dia-
mond shape marking the positions of such maximal conduc-
tance GA�V ,B�. We believe that this hyperfine structure could
be probed experimentally.

To complete the discussion of the subgap Andreev current
we briefly comment on a possible influence of an asymmetry
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FIG. 1. The differential conductance G�V� versus bias voltage V
for N-QD-S junction. Notice a splitting of the gap-edge singularities
around eV= �� induced by magnetic field B. We used for compu-
tations 
d=0, U=0, �N=�, �S=0.1�, T=0.01� assuming �
=0.1D.
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FIG. 2. Zeeman splitting of the bound Andreev states for the QD
located in the center of superconducting gap 
d=0. Upper panel
illustrates the density of states �d�
� and the bottom figure shows
differential conductance of the in-gap current. For computations we
used �N=0.1�S, �BB=0.1�S assuming �S=0.01D and U=0.
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FIG. 3. Differential conductance GA�V� of the in-gap Andreev
current as a function of the bias voltage V and the QD level 
d. We
used for computations �S=0.01D, �N=0.1�S, and T=0.01�S, and
set the magnetic field 1

2�BB=0.1�S. The conductance is expressed
in units of 4e2 /h.
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between the hybridization couplings �N and �S. We explore
for this purpose the zero-bias conductance GA�V=0�. At low
temperature we find from Eq. �12� that

GA�0�

=
4e2

h

�N
2 ��S/2�2

���BB − Ed�2 + ��N

2
�2����BB + Ed�2 + ��N

2
�2� .

�13�

In Fig. 5 we show the influence of magnetic field on the
zero-bias Andreev conductance for several values of the
asymmetry rate �N /�S. If �N /�S�1 then a line broadening
of the Andreev states diminishes so in consequence the par-
ticle and hole peaks become well separated. Under such con-
ditions the subgap conductance has maxima around the qua-
siparticle states at ��S /2 �where the ideal conductance
4e2 /h is reached�. Let us recall that in absence of magnetic
field, Eq. �13� reproduces for 
d=0 the well-known result
GA�0�= 4e2

h �
2�N�S

�S
2+�N

2 �2.14 For the symmetric coupling �S=�N it
yields GA�0�=4e2 /h.9

V. INFLUENCE OF THE COULOMB CORRELATIONS

In the limit �→� the self-energy �d,�
0 becomes a static

quantity �Eq. �10��, therefore the role of superconducting
lead can be exactly replaced by the on-dot gap parameter

�d=�S /2. Instead of Eq. �1� we can thus use the following
auxiliary Hamiltonian

Ĥ = ĤN + �
k,�

�VkNd̂�
† ĉk�	 + h.c.� + �

�

�d,�d̂�
† d̂�

+ ��dd̂↑
†d̂↓

† + H.c.� + Un̂d↑n̂d↓, �14�

which turns out to be very convenient for investigating the
correlations. Tanaka and co-workers13,14 were able to rigor-
ously prove that the self-energy �d,�

U must have a diagonal
structure due to invariance of Un̂d↑n̂d↓ term on the
Bogoliubov-Valatin transformation.

In the remaining part of this section we shall focus on the
subgap Andreev current transmitted through the correlated
QD. The matrix Green’s function �2� simplifies in the limit
�→� to the following �exact� structure:

G��
� =�
 − 
d,� − �N,��
�
1

2
�S

1

2
�S 
 + 
d,−� + �N,−�

� �− 
� �
−1

.

�15�

Influence of the correlations have been so far analyzed for
the Hamiltonian �1� using various techniques.9–15 Here we
estimate the diagonal self-energy �N,��
� within Eq. �14� by
the equation of motion method22,23


 − 
d,� − �N,��
� =
�
 − 
d,� − �d,�

0 �
���
 − 
d,� − U − �d,�
0 �
� − �d,�

3 �
�� + U�d,�
1 �
�


 − 
d,� − �d,�
0 �
� − �d,�

3 �
� − U�1 − 	n̂d,−�
�
, �16�

where �d,�
�=1,3�
� are given by22

�d,�
� �
� = �

k
�VkN�2� 1


 + �kN − 
d,−� − 
d,� − U
+

1


 − �kN + 
d,−� − 
d,�
��f�
,T��3−�/2. �17�
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FIG. 4. Differential conductance GA�V� of the in-gap Andreev
current as a function of the bias voltage V and magnetic field B for
the QD level 
d=0 and �N=0.1�S, T=0.01�S. Dark areas denote
the regions where GA approaches the value 4e2 /h.
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Approximations �16� and �17� qualitatively reproduce the
following properties caused by on-dot correlations: �i� the
charging effect and �ii� a possible appearance of the
Kondo resonance for temperatures smaller than TK

=

U�N

2 exp��
d�
d+U� /U�N�. The latter one is related to
screening of the quantum dot spin by itinerant electrons of
the metallic lead. In the case when energy level 
d is located
slightly below �N the hybridization VkN induces effectively
antiferromagnetic interaction between the QD and metallic
lead. In consequence the bound singlet state can be formed
giving rise to the resonance at 
=�N for temperatures T
�TK. Magnetic field eventually splits this resonance as illus-
trated in Fig. 6.

Any features present in the QD spectrum are further
showing up in the measurable differential conductance. This
is also valid for the Kondo resonance. Since it forms near the
chemical potential �N, therefore its signatures appear pre-
dominantly in the low-voltage current. In fact, it has been
shown that Kondo resonance enhances at low temperatures
the zero-bias Andreev conductance,9,15 however, its magni-
tude remains much smaller than the unitary limit value 2e2 /h
typical for N-QD-N systems in the Kondo regime. In the
present context we emphasize that magnetic field enforces
the Zeeman splitting of the zero-bias Andreev anomaly in
much the same way as it affects the zero-bias anomaly for
the QD coupled to both metallic leads.24,25

The zero-bias enhancement of the Andreev conductance is
a feature whose presence might be difficult to notice9,10,15

unless some stringent requirements are fulfilled.23 It turns out
that optimal conditions for the low-temperature enhancement
of GA�V�0� take place when �S is comparable to �N �see
Figs. 7 and 8� and 
d is located slightly below the energy-gap
center. For an increasing asymmetry between the hybridiza-
tions �N and �S the magnitude of low voltage Andreev con-
ductance diminishes �similarly as we have been shown in
Sec. IV upon neglecting the correlations�. On the other hand,
for 
d moving far aside from the superconductor’s gap center
the proximity effect becomes weakened and the overall An-
dreev conductance is again suppressed.

In general it seems that an interplay between the on-dot
pairing �absorbed from the superconducting electrode� and
the Kondo state �due to screening of QD spin by the metallic
lead electrons� has the same character as a competition of
superconductivity versus magnetism in the solid-state phys-
ics. Since this is outside the main scope of the present topic

we shall discuss it separately.23 A combination of the Kondo
physics, superconductivity, and the Zeeman polarization is a
complex problem, and to our knowledge only few papers
have so far attempted to address this challenging issue.26,27

VI. SUMMARY

We have explored the effect of magnetic field on charge
transport through the quantum dot attached to one normal
and one superconducting electrode. For a bias voltage V
� �� /e we find the Zeeman splitting of the square-root
singularities in the differential conductance. This resembles
the experimental result of Meservey, Tedrow and Fulde ob-
served in the N-I-S junction1 which for the N-QD-S struc-
tures it seems rather easy to achieve.

We have extended our study also on the in-gap Andreev
current. Due to the proximity effect the particles and holes of
the quantum dot get mixed and effectively the spectrum ac-
quires the BCS-like structure �Eq. �11��. Differential conduc-
tance GA�V� of the in-gap current indirectly probes such
structure of the bound Andreev states. We have shown that
magnetic field leads to appearance of four peaks via the com-
bined particle-hole and Zeeman splittings. We hope that this
result might stimulate a search for the experimental detection
of above mentioned structures.

Moreover, we have explored influence of the on-dot Cou-
lomb interactions on the subgap Andreev current assuming
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the limit �→�. Solid line corresponds to �BB=�S /3.
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the extreme limit �→�. In general, the on-dot correlations
contribute to the following QD spectrum: �i� appearance of
the Coulomb satellite near 
=
d,↓+U �charging effect� and
�ii� at sufficiently low temperatures can produce the narrow
Kondo resonance at the chemical potential �N. Magnetic
field imposes the hyperfine splitting onto such spectrum in a
similar way as has been observed in N-QD-N junctions.25

The Kondo effect alone is exemplified in the zero-bias An-
dreev conductance where under appropriate conditions,23 a
low-temperature enhancement can be seen if �N��S and the
gate voltage tunes 
d nearly to the energy-gap center.

It would be of interest to use some more sophisticated
methods for treating the on-dot interaction U in order to
check whether there exists a minimal magnetic field neces-
sary for splitting the Kondo peak �as theoretically predicted

for N-QD-N junctions24� observable in the Andreev conduc-
tance. One can also study QD coupled with d-wave super-
conductor, where the square-root singularities are replaced
by weaker kinks. We think that the Meservey-Tedrow-Fulde
effect would be observable there too �but in a less pro-
nounced manner� whereas the subgap conductance might
qualitatively change.
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